Balansert treningdatakuratur sikrer at store språkmodeller lærer fra jevnt representerte data. Dette reduserer bias og forbedrer ytelse. Metoder som ClusterClip og Google Active Learning har vist betydelige resultater. EU AI-loven krever nå dokumentasjon av balansert data. Framtiden ser ut til å inkludere dynamisk kuratur for bedre rettferdighet.